Optimum Young’s Modulus of a Homogeneous Cylinder Energetically Equivalent to a Functionally Graded Cylinder

نویسندگان

  • John Dryden
  • Romesh C. Batra
چکیده

For a functionally graded (FG) circular cylinder loaded by uniform pressures on the inner and the outer surfaces and Young’s modulus varying in the radial direction, we find lower and upper bounds for Young’s modulus of the energetically equivalent homogeneous cylinder. That is, the strain energies of the FG and the homogeneous cylinders are equal to each other. For a typical power law variation of Young’s modulus in the FG cylinder, it is shown that taking only two series terms, yields good values for bounds of the equivalent modulus. We also study two inverse problems. First, an investigation is made to find the radial variation of Young’s modulus in the FG cylinder, having a constant Poisson’s ratio, that gives the maximum value of the equivalent modulus. Second, the complementary problem of finding the radial variation of Poisson’s ratio in the FG cylinder, having a constant stiffness, that gives the maximum value of the equivalent modulus, is considered. It is found that the spatial variation of the elastic properties, that maximizes the equivalent modulus, depends strongly upon the external loading on the cylinder.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalized solution of functionally graded hollow cylinder under torsional load

In this paper, a general solution for torsion of hollow cylinders made of functionally graded materials (FGM) was investigated. The problem was formulated in terms of Prandtl’s stress and, in general, the shear stress and angle of twist were derived. Variations in the material properties such as Young’s modulus and Poisson’s ratio might be arbitrary functions of the radial coordinate. Various m...

متن کامل

Thermal Creep Analysis of Functionally Graded Thick-Walled Cylinder Subjected to Torsion and Internal and External Pressure

Safety analysis has been done for the torsion of a functionally graded thick-walled  circular cylinder under internal and external pressure subjected to thermal loading. In order to determine stresses the concept of Seth’s transition theory based on generalized principal strain measure has been used. This theory simplifies the set of mechanical equations by mentioning the order of the measure of...

متن کامل

Material tailoring and moduli homogenization for finite twisting deformations of functionally graded Mooney-Rivlin hollow cylinders

We analytically analyze finite plane strain twisting deformations of a hollow cylinder made of an isotropic and inhomogeneousMooney-Rivlinmaterial withmaterial moduli varying in the radial direction. The cylinder is deformed by applying either tangential tractions on the inner surface and tangential displacements on the outer surface or vice versa. The radial variation of the moduli is found th...

متن کامل

Elastic-Plastic Transition of Pressurized Functionally Graded Orthotropic Cylinder using Seth’s Transition Theory

In this paper the radial deformation and the corresponding stresses in a functionally graded orthotropic hollow cylinder with the variation in thickness and density according to power law and rotating about its axis under pressure is investigated by using Seth's transition theory. The material of the cylinder is assumed to be non-homogeneous and orthotropic. This theory helps to achieve better ...

متن کامل

Estimation of Thermoelastic State of a Thermally Sensitive Functionally Graded Thick Hollow Cylinder: A Mathematical Model

The object of the present paper is to study temperature distribution and thermal stresses of a functionally graded thick hollow cylinder with temperature dependent material properties. All the material properties except Poisson’s ratio are assumed to be dependent on temperature. The nonlinear heat conduction with temperature dependent thermal conductivity and specific heat capacity is reduced t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012